Voltage Instability Detection Using Neural Networks
نویسندگان
چکیده
The explosive growth in decision-support systems over the past 30 years has yielded numerous “intelligent” systems that have often produced less-than-stellar results (Michalewicz Z. et al., 2005). The increasing trend in developing intelligent systems based on neural networks is attributed to their capability of learning nonlinear problems offline with selective training, which can lead to sufficiently accurate online response. Artificial neural networks have been used to solve many problems obtaining outstanding results in various application areas such as power systems. Power systems applications can benefit from such intelligent systems; particularly for voltage stabilization, where voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. This article presents an intelligent system which detects voltage instability and classifies voltage output of an assumed power distribution system (PDS) as: stable, unstable or overload. The novelty of our work is the use of voltage output images as the input patterns to the neural network for training and generalizing purposes, thus providing a faster instability detection system that simulates a trained operator controlling and monitoring the 3-phase voltage output of the simulated PDS.
منابع مشابه
Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملFuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملFault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کامل